API Reference

Segmentation

kraken.blla module

Note

blla provides the interface to the fully trainable segmenter. For the legacy segmenter interface refer to the pageseg module. Note that recognition models are not interchangeable between segmenters.

kraken.blla.segment(im, text_direction='horizontal-lr', mask=None, reading_order_fn=polygonal_reading_order, model=None, device='cpu', raise_on_error=False, autocast=False)

Segments a page into text lines using the baseline segmenter.

Segments a page into text lines and returns the polyline formed by each baseline and their estimated environment.

Parameters:
  • im (PIL.Image.Image) – Input image. The mode can generally be anything but it is possible to supply a binarized-input-only model which requires accordingly treated images.

  • text_direction (Literal['horizontal-lr', 'horizontal-rl', 'vertical-lr', 'vertical-rl']) – Passed-through value for serialization.serialize.

  • mask (Optional[numpy.ndarray]) – A bi-level mask image of the same size as im where 0-valued regions are ignored for segmentation purposes. Disables column detection.

  • reading_order_fn (Callable) – Function to determine the reading order. Has to accept a list of tuples (baselines, polygon) and a text direction (lr or rl).

  • model (Union[List[kraken.lib.vgsl.TorchVGSLModel], kraken.lib.vgsl.TorchVGSLModel]) – One or more TorchVGSLModel containing a segmentation model. If none is given a default model will be loaded.

  • device (str) – The target device to run the neural network on.

  • raise_on_error (bool) – Raises error instead of logging them when they are not-blocking

  • autocast (bool) – Runs the model with automatic mixed precision

Returns:

A kraken.containers.Segmentation class containing reading order sorted baselines (polylines) and their respective polygonal boundaries as kraken.containers.BaselineLine records. The last and first point of each boundary polygon are connected.

Raises:
Return type:

kraken.containers.Segmentation

Notes

Multi-model operation is most useful for combining one or more region detection models and one text line model. Detected lines from all models are simply combined without any merging or duplicate detection so the chance of the same line appearing multiple times in the output are high. In addition, neural reading order determination is disabled when more than one model outputs lines.

kraken.pageseg module

Note

pageseg is the legacy bounding box-based segmenter. For the trainable baseline segmenter interface refer to the blla module. Note that recognition models are not interchangeable between segmenters.

kraken.pageseg.segment(im, text_direction='horizontal-lr', scale=None, maxcolseps=2, black_colseps=False, no_hlines=True, pad=0, mask=None, reading_order_fn=reading_order)

Segments a page into text lines.

Segments a page into text lines and returns the absolute coordinates of each line in reading order.

Parameters:
  • im (PIL.Image.Image) – A bi-level page of mode ‘1’ or ‘L’

  • text_direction (str) – Principal direction of the text (horizontal-lr/rl/vertical-lr/rl)

  • scale (Optional[float]) – Scale of the image. Will be auto-determined if set to None.

  • maxcolseps (float) – Maximum number of whitespace column separators

  • black_colseps (bool) – Whether column separators are assumed to be vertical black lines or not

  • no_hlines (bool) – Switch for small horizontal line removal.

  • pad (Union[int, Tuple[int, int]]) – Padding to add to line bounding boxes. If int the same padding is used both left and right. If a 2-tuple, uses (padding_left, padding_right).

  • mask (Optional[numpy.ndarray]) – A bi-level mask image of the same size as im where 0-valued regions are ignored for segmentation purposes. Disables column detection.

  • reading_order_fn (Callable) – Function to call to order line output. Callable accepting a list of slices (y, x) and a text direction in (rl, lr).

Returns:

A kraken.containers.Segmentation class containing reading order sorted bounding box-type lines as kraken.containers.BBoxLine records.

Raises:

KrakenInputException – if the input image is not binarized or the text direction is invalid.

Return type:

kraken.containers.Segmentation

Recognition

kraken.rpred module

class kraken.rpred.mm_rpred(nets, im, bounds, pad=16, bidi_reordering=True, tags_ignore=None, no_legacy_polygons=False)

Multi-model version of kraken.rpred.rpred

Parameters:
bidi_reordering
bounds
im
len
line_iter
nets
no_legacy_polygons
one_channel_modes
pad
seg_types
tags_ignore
kraken.rpred.rpred(network, im, bounds, pad=16, bidi_reordering=True, no_legacy_polygons=False)

Uses a TorchSeqRecognizer and a segmentation to recognize text

Parameters:
  • network (kraken.lib.models.TorchSeqRecognizer) – A TorchSegRecognizer object

  • im (PIL.Image.Image) – Image to extract text from

  • bounds (kraken.containers.Segmentation) – A Segmentation class instance containing either a baseline or bbox segmentation.

  • pad (int) – Extra blank padding to the left and right of text line. Auto-disabled when expected network inputs are incompatible with padding.

  • bidi_reordering (Union[bool, str]) – Reorder classes in the ocr_record according to the Unicode bidirectional algorithm for correct display. Set to L|R to change base text direction.

  • no_legacy_polygons (bool)

Yields:

An ocr_record containing the recognized text, absolute character positions, and confidence values for each character.

Return type:

Generator[kraken.containers.ocr_record, None, None]

Serialization

kraken.serialization module

kraken.serialization.render_report(model, chars, errors, char_confusions, scripts, insertions, deletions, substitutions)

Renders an accuracy report.

Parameters:
  • model (str) – Model name.

  • errors (int) – Number of errors on test set.

  • char_confusions (dict) – Dictionary mapping a tuple (gt, pred) to a number of occurrences.

  • scripts (dict) – Dictionary counting character per script.

  • insertions (dict) – Dictionary counting insertion operations per Unicode script

  • deletions (int) – Number of deletions

  • substitutions (dict) – Dictionary counting substitution operations per Unicode script.

  • chars (int)

Returns:

A string containing the rendered report.

Return type:

str

kraken.serialization.serialize(results, image_size=(0, 0), writing_mode='horizontal-tb', scripts=None, template='alto', template_source='native', processing_steps=None)

Serializes recognition and segmentation results into an output document.

Serializes a Segmentation container object containing either segmentation or recognition results into an output document. The rendering is performed with jinja2 templates that can either be shipped with kraken (template_source == ‘native’) or custom (template_source == ‘custom’).

Note: Empty records are ignored for serialization purposes.

Parameters:
  • segmentation – Segmentation container object

  • image_size (Tuple[int, int]) – Dimensions of the source image

  • writing_mode (Literal['horizontal-tb', 'vertical-lr', 'vertical-rl']) – Sets the principal layout of lines and the direction in which blocks progress. Valid values are horizontal-tb, vertical-rl, and vertical-lr.

  • scripts (Optional[Iterable[str]]) – List of scripts contained in the OCR records

  • template ([os.PathLike, str]) – Selector for the serialization format. May be ‘hocr’, ‘alto’, ‘page’ or any template found in the template directory. If template_source is set to custom a path to a template is expected.

  • template_source (Literal['native', 'custom']) – Switch to enable loading of custom templates from outside the kraken package.

  • processing_steps (Optional[List[kraken.containers.ProcessingStep]]) – A list of ProcessingStep container classes describing the processing kraken performed on the inputs.

  • results (kraken.containers.Segmentation)

Returns:

The rendered template

Return type:

str

Default templates

ALTO 4.4

PageXML

hOCR

ABBYY XML

Containers and Helpers

kraken.lib.codec module

class kraken.lib.codec.PytorchCodec(charset, strict=False)

Builds a codec converting between graphemes/code points and integer label sequences.

charset may either be a string, a list or a dict. In the first case each code point will be assigned a label, in the second case each string in the list will be assigned a label, and in the final case each key string will be mapped to the value sequence of integers. In the first two cases labels will be assigned automatically. When a mapping is manually provided the label codes need to be a prefix-free code.

As 0 is the blank label in a CTC output layer, output labels and input dictionaries are/should be 1-indexed.

Parameters:
  • charset (Union[Dict[str, Sequence[int]], Sequence[str], str]) – Input character set.

  • strict – Flag indicating if encoding/decoding errors should be ignored or cause an exception.

Raises:

KrakenCodecException – If the character set contains duplicate entries or the mapping is non-singular or non-prefix-free.

add_labels(charset)

Adds additional characters/labels to the codec.

charset may either be a string, a list or a dict. In the first case each code point will be assigned a label, in the second case each string in the list will be assigned a label, and in the final case each key string will be mapped to the value sequence of integers. In the first two cases labels will be assigned automatically.

As 0 is the blank label in a CTC output layer, output labels and input dictionaries are/should be 1-indexed.

Parameters:

charset (Union[Dict[str, Sequence[int]], Sequence[str], str]) – Input character set.

Return type:

PytorchCodec

c_sorted
decode(labels)

Decodes a labelling.

Given a labelling with cuts and confidences returns a string with the cuts and confidences aggregated across label-code point correspondences. When decoding multilabels to code points the resulting cuts are min/max, confidences are averaged.

Parameters:

labels (Sequence[Tuple[int, int, int, float]]) – Input containing tuples (label, start, end, confidence).

Returns:

A list of tuples (code point, start, end, confidence)

Return type:

List[Tuple[str, int, int, float]]

encode(s)

Encodes a string into a sequence of labels.

If the code is non-singular we greedily encode the longest sequence first.

Parameters:

s (str) – Input unicode string

Returns:

Ecoded label sequence

Raises:

KrakenEncodeException – if the a subsequence is not encodable and the codec is set to strict mode.

Return type:

torch.IntTensor

property is_valid: bool

Returns True if the codec is prefix-free (in label space) and non-singular (in both directions).

Return type:

bool

l2c: Dict[Tuple[int], str]
l2c_single
property max_label: int

Returns the maximum label value.

Return type:

int

merge(codec)

Transforms this codec (c1) into another (c2) reusing as many labels as possible.

The resulting codec is able to encode the same code point sequences while not necessarily having the same labels for them as c2. Retains matching character -> label mappings from both codecs, removes mappings not c2, and adds mappings not in c1. Compound labels in c2 for code point sequences not in c1 containing labels also in use in c1 are added as separate labels.

Parameters:

codec (PytorchCodec) – PytorchCodec to merge with

Returns:

A merged codec and a list of labels that were removed from the original codec.

Return type:

Tuple[PytorchCodec, Set]

strict

kraken.containers module

class kraken.containers.Segmentation

A container class for segmentation or recognition results.

In order to allow easy JSON de-/serialization, nested classes for lines (BaselineLine/BBoxLine) and regions (Region) are reinstantiated from their dictionaries.

type

Field indicating if baselines (kraken.containers.BaselineLine) or bbox (kraken.containers.BBoxLine) line records are in the segmentation.

imagename

Path to the image associated with the segmentation.

text_direction

Sets the principal orientation (of the line), i.e. horizontal/vertical, and reading direction (of the document), i.e. lr/rl.

script_detection

Flag indicating if the line records have tags.

lines

List of line records. Records are expected to be in a valid reading order.

regions

Dict mapping types to lists of regions.

line_orders

List of alternative reading orders for the segmentation. Each reading order is a list of line indices.

imagename: str | os.PathLike
line_orders: List[List[int]] | None = None
lines: List[BaselineLine | BBoxLine] | None = None
regions: Dict[str, List[Region]] | None = None
script_detection: bool
text_direction: Literal['horizontal-lr', 'horizontal-rl', 'vertical-lr', 'vertical-rl']
type: Literal['baselines', 'bbox']
class kraken.containers.BaselineLine

Baseline-type line record.

A container class for a single line in baseline + bounding polygon format, optionally containing a transcription, tags, or associated regions.

id

Unique identifier

baseline

List of tuples (x_n, y_n) defining the baseline.

boundary

List of tuples (x_n, y_n) defining the bounding polygon of the line. The first and last points should be identical.

text

Transcription of this line.

base_dir

An optional string defining the base direction (also called paragraph direction) for the BiDi algorithm. Valid values are ‘L’ or ‘R’. If None is given the default auto-resolution will be used.

imagename

Path to the image associated with the line.

tags

A dict mapping types to values.

split

Defines whether this line is in the train, validation, or test set during training.

regions

A list of identifiers of regions the line is associated with.

base_dir: Literal['L', 'R'] | None = None
baseline: List[Tuple[int, int]]
boundary: List[Tuple[int, int]]
id: str
imagename: str | os.PathLike | None = None
regions: List[str] | None = None
split: Literal['train', 'validation', 'test'] | None = None
tags: Dict[str, str] | None = None
text: str | None = None
type: str = 'baselines'
class kraken.containers.BBoxLine

Bounding box-type line record.

A container class for a single line in axis-aligned bounding box format, optionally containing a transcription, tags, or associated regions.

id

Unique identifier

bbox

Tuple in form (xmin, ymin, xmax, ymax) defining the bounding box.

text

Transcription of this line.

base_dir

An optional string defining the base direction (also called paragraph direction) for the BiDi algorithm. Valid values are ‘L’ or ‘R’. If None is given the default auto-resolution will be used.

imagename

Path to the image associated with the line..

tags

A dict mapping types to values.

split

Defines whether this line is in the train, validation, or test set during training.

regions

A list of identifiers of regions the line is associated with.

text_direction

Sets the principal orientation (of the line) and reading direction (of the document).

base_dir: Literal['L', 'R'] | None = None
bbox: Tuple[int, int, int, int]
id: str
imagename: str | os.PathLike | None = None
regions: List[str] | None = None
split: Literal['train', 'validation', 'test'] | None = None
tags: Dict[str, str] | None = None
text: str | None = None
text_direction: Literal['horizontal-lr', 'horizontal-rl', 'vertical-lr', 'vertical-rl'] = 'horizontal-lr'
type: str = 'bbox'
class kraken.containers.ocr_record(prediction, cuts, confidences, display_order=True)

A record object containing the recognition result of a single line

Parameters:
  • prediction (str)

  • cuts (List[Union[Tuple[int, int], Tuple[Tuple[int, int], Tuple[int, int], Tuple[int, int], Tuple[int, int]]]])

  • confidences (List[float])

  • display_order (bool)

base_dir = None
property confidences: List[float]
Return type:

List[float]

property cuts: List
Return type:

List

abstract display_order(base_dir)
Return type:

ocr_record

abstract logical_order(base_dir)
Return type:

ocr_record

property prediction: str
Return type:

str

abstract property type
class kraken.containers.BaselineOCRRecord(prediction, cuts, confidences, line, base_dir=None, display_order=True)

A record object containing the recognition result of a single line in baseline format.

Parameters:
  • prediction (str)

  • cuts (List[Tuple[int, int]])

  • confidences (List[float])

  • line (Union[BaselineLine, Dict[str, Any]])

  • base_dir (Optional[Literal['L', 'R']])

  • display_order (bool)

type

‘baselines’ to indicate a baseline record

prediction

The text predicted by the network as one continuous string.

Return type:

str

cuts

The absolute bounding polygons for each code point in prediction as a list of tuples [(x0, y0), (x1, y2), …].

Return type:

List[Tuple[int, int]]

confidences

A list of floats indicating the confidence value of each code point.

Return type:

List[float]

base_dir

An optional string defining the base direction (also called paragraph direction) for the BiDi algorithm. Valid values are ‘L’ or ‘R’. If None is given the default auto-resolution will be used.

display_order

Flag indicating the order of the code points in the prediction. In display order (True) the n-th code point in the string corresponds to the n-th leftmost code point, in logical order (False) the n-th code point corresponds to the n-th read code point. See [UAX #9](https://unicode.org/reports/tr9) for more details.

Parameters:

base_dir (Optional[Literal['L', 'R']])

Return type:

BaselineOCRRecord

Notes

When slicing the record the behavior of the cuts is changed from earlier versions of kraken. Instead of returning per-character bounding polygons a single polygons section of the line bounding polygon starting at the first and extending to the last code point emitted by the network is returned. This aids numerical stability when computing aggregated bounding polygons such as for words. Individual code point bounding polygons are still accessible through the cuts attribute or by iterating over the record code point by code point.

base_dir
property cuts: List[Tuple[int, int]]
Return type:

List[Tuple[int, int]]

display_order(base_dir=None)

Returns the OCR record in Unicode display order, i.e. ordered from left to right inside the line.

Parameters:

base_dir (Optional[Literal['L', 'R']]) – An optional string defining the base direction (also called paragraph direction) for the BiDi algorithm. Valid values are ‘L’ or ‘R’. If None is given the default auto-resolution will be used.

Return type:

BaselineOCRRecord

logical_order(base_dir=None)

Returns the OCR record in Unicode logical order, i.e. in the order the characters in the line would be read by a human.

Parameters:

base_dir (Optional[Literal['L', 'R']]) – An optional string defining the base direction (also called paragraph direction) for the BiDi algorithm. Valid values are ‘L’ or ‘R’. If None is given the default auto-resolution will be used.

Return type:

BaselineOCRRecord

type = 'baselines'
class kraken.containers.BBoxOCRRecord(prediction, cuts, confidences, line, base_dir=None, display_order=True)

A record object containing the recognition result of a single line in bbox format.

Parameters:
  • prediction (str)

  • cuts (List[Tuple[Tuple[int, int], Tuple[int, int], Tuple[int, int], Tuple[int, int]]])

  • confidences (List[float])

  • line (Union[BBoxLine, Dict[str, Any]])

  • base_dir (Optional[Literal['L', 'R']])

  • display_order (bool)

type

‘bbox’ to indicate a bounding box record

prediction

The text predicted by the network as one continuous string.

Return type:

str

cuts

The absolute bounding polygons for each code point in prediction as a list of 4-tuples ((x0, y0), (x1, y0), (x1, y1), (x0, y1)).

Return type:

List

confidences

A list of floats indicating the confidence value of each code point.

Return type:

List[float]

base_dir

An optional string defining the base direction (also called paragraph direction) for the BiDi algorithm. Valid values are ‘L’ or ‘R’. If None is given the default auto-resolution will be used.

display_order

Flag indicating the order of the code points in the prediction. In display order (True) the n-th code point in the string corresponds to the n-th leftmost code point, in logical order (False) the n-th code point corresponds to the n-th read code point. See [UAX #9](https://unicode.org/reports/tr9) for more details.

Parameters:

base_dir (Optional[Literal['L', 'R']])

Return type:

BBoxOCRRecord

Notes

When slicing the record the behavior of the cuts is changed from earlier versions of kraken. Instead of returning per-character bounding polygons a single polygons section of the line bounding polygon starting at the first and extending to the last code point emitted by the network is returned. This aids numerical stability when computing aggregated bounding polygons such as for words. Individual code point bounding polygons are still accessible through the cuts attribute or by iterating over the record code point by code point.

base_dir
display_order(base_dir=None)

Returns the OCR record in Unicode display order, i.e. ordered from left to right inside the line.

Parameters:

base_dir (Optional[Literal['L', 'R']]) – An optional string defining the base direction (also called paragraph direction) for the BiDi algorithm. Valid values are ‘L’ or ‘R’. If None is given the default auto-resolution will be used.

Return type:

BBoxOCRRecord

logical_order(base_dir=None)

Returns the OCR record in Unicode logical order, i.e. in the order the characters in the line would be read by a human.

Parameters:

base_dir (Optional[Literal['L', 'R']]) – An optional string defining the base direction (also called paragraph direction) for the BiDi algorithm. Valid values are ‘L’ or ‘R’. If None is given the default auto-resolution will be used.

Return type:

BBoxOCRRecord

type = 'bbox'
class kraken.containers.ProcessingStep

A processing step in the recognition pipeline.

id

Unique identifier

category

Category of processing step that has been performed.

description

Natural-language description of the process.

settings

Dict describing the parameters of the processing step.

category: Literal['preprocessing', 'processing', 'postprocessing']
description: str
id: str
settings: Dict[str, Dict | str | float | int | bool]

kraken.lib.ctc_decoder

kraken.lib.ctc_decoder.beam_decoder(outputs, beam_size=3)

Translates back the network output to a label sequence using same-prefix-merge beam search decoding as described in [0].

[0] Hannun, Awni Y., et al. “First-pass large vocabulary continuous speech recognition using bi-directional recurrent DNNs.” arXiv preprint arXiv:1408.2873 (2014).

Parameters:
  • output – (C, W) shaped softmax output tensor

  • beam_size (int) – Size of the beam

  • outputs (numpy.ndarray)

Returns:

A list with tuples (class, start, end, prob). max is the maximum value of the softmax layer in the region.

Return type:

List[Tuple[int, int, int, float]]

kraken.lib.ctc_decoder.greedy_decoder(outputs)

Translates back the network output to a label sequence using greedy/best path decoding as described in [0].

[0] Graves, Alex, et al. “Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks.” Proceedings of the 23rd international conference on Machine learning. ACM, 2006.

Parameters:
  • output – (C, W) shaped softmax output tensor

  • outputs (numpy.ndarray)

Returns:

A list with tuples (class, start, end, max). max is the maximum value of the softmax layer in the region.

Return type:

List[Tuple[int, int, int, float]]

kraken.lib.ctc_decoder.blank_threshold_decoder(outputs, threshold=0.5)

Translates back the network output to a label sequence as the original ocropy/clstm.

Thresholds on class 0, then assigns the maximum (non-zero) class to each region.

Parameters:
  • output – (C, W) shaped softmax output tensor

  • threshold (float) – Threshold for 0 class when determining possible label locations.

  • outputs (numpy.ndarray)

Returns:

A list with tuples (class, start, end, max). max is the maximum value of the softmax layer in the region.

Return type:

List[Tuple[int, int, int, float]]

kraken.lib.exceptions

class kraken.lib.exceptions.KrakenCodecException(message=None)

Common base class for all non-exit exceptions.

class kraken.lib.exceptions.KrakenStopTrainingException(message=None)

Common base class for all non-exit exceptions.

class kraken.lib.exceptions.KrakenEncodeException(message=None)

Common base class for all non-exit exceptions.

class kraken.lib.exceptions.KrakenRecordException(message=None)

Common base class for all non-exit exceptions.

class kraken.lib.exceptions.KrakenInvalidModelException(message=None)

Common base class for all non-exit exceptions.

class kraken.lib.exceptions.KrakenInputException(message=None)

Common base class for all non-exit exceptions.

class kraken.lib.exceptions.KrakenRepoException(message=None)

Common base class for all non-exit exceptions.

class kraken.lib.exceptions.KrakenCairoSurfaceException(message, width, height)

Raised when the Cairo surface couldn’t be created.

Parameters:
  • message (str)

  • width (int)

  • height (int)

message

Error message

Type:

str

width

Width of the surface

Type:

int

height

Height of the surface

Type:

int

height
message
width

kraken.lib.models module

class kraken.lib.models.TorchSeqRecognizer(nn, decoder=kraken.lib.ctc_decoder.greedy_decoder, train=False, device='cpu')

A wrapper class around a TorchVGSLModel for text recognition.

Parameters:
codec
decoder
device
forward(line, lens=None)

Performs a forward pass on a torch tensor of one or more lines with shape (N, C, H, W) and returns a numpy array (N, W, C).

Parameters:
  • line (torch.Tensor) – NCHW line tensor

  • lens (torch.Tensor) – Optional tensor containing sequence lengths if N > 1

Returns:

Tuple with (N, W, C) shaped numpy array and final output sequence lengths.

Raises:

KrakenInputException – Is raised if the channel dimension isn’t of size 1 in the network output.

Return type:

Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray]]

kind = ''
nn
one_channel_mode
predict(line, lens=None)

Performs a forward pass on a torch tensor of a line with shape (N, C, H, W) and returns the decoding as a list of tuples (string, start, end, confidence).

Parameters:
  • line (torch.Tensor) – NCHW line tensor

  • lens (Optional[torch.Tensor]) – Optional tensor containing sequence lengths if N > 1

Returns:

List of decoded sequences.

Return type:

List[List[Tuple[str, int, int, float]]]

predict_labels(line, lens=None)

Performs a forward pass on a torch tensor of a line with shape (N, C, H, W) and returns a list of tuples (class, start, end, max). Max is the maximum value of the softmax layer in the region.

Parameters:
  • line (torch.tensor)

  • lens (torch.Tensor)

Return type:

List[List[Tuple[int, int, int, float]]]

predict_string(line, lens=None)

Performs a forward pass on a torch tensor of a line with shape (N, C, H, W) and returns a string of the results.

Parameters:
  • line (torch.Tensor) – NCHW line tensor

  • lens (Optional[torch.Tensor]) – Optional tensor containing the sequence lengths of the input batch.

Return type:

List[str]

seg_type
to(device)

Moves model to device and automatically loads input tensors onto it.

train
kraken.lib.models.load_any(fname, train=False, device='cpu')

Loads anything that was, is, and will be a valid ocropus model and instantiates a shiny new kraken.lib.lstm.SeqRecognizer from the RNN configuration in the file.

Currently it recognizes the following kinds of models:

  • protobuf models containing VGSL segmentation and recognition networks.

Additionally an attribute ‘kind’ will be added to the SeqRecognizer containing a string representation of the source kind. Current known values are:

  • vgsl for VGSL models

Parameters:
  • fname (Union[os.PathLike, str]) – Path to the model

  • train (bool) – Enables gradient calculation and dropout layers in model.

  • device (str) – Target device

Returns:

A kraken.lib.models.TorchSeqRecognizer object.

Raises:

KrakenInvalidModelException – if the model is not loadable by any parser.

Return type:

TorchSeqRecognizer

kraken.lib.segmentation module

kraken.lib.segmentation.reading_order(lines, text_direction='lr')

Given the list of lines (a list of 2D slices), computes the partial reading order. The output is a binary 2D array such that order[i,j] is true if line i comes before line j in reading order.

Parameters:
  • lines (Sequence[Tuple[slice, slice]])

  • text_direction (Literal['lr', 'rl'])

Return type:

numpy.ndarray

kraken.lib.segmentation.neural_reading_order(lines, text_direction='lr', regions=None, im_size=None, model=None, class_mapping=None)

Given a list of baselines and regions, calculates the correct reading order and applies it to the input.

Parameters:
  • lines (Sequence[Dict]) – List of tuples containing the baseline and its polygonization.

  • model (kraken.lib.vgsl.TorchVGSLModel) – torch Module for

  • text_direction (str)

  • regions (Optional[Sequence[shapely.geometry.Polygon]])

  • im_size (Tuple[int, int])

  • class_mapping (Dict[str, int])

Returns:

The indices of the ordered input.

Return type:

Sequence[int]

kraken.lib.segmentation.polygonal_reading_order(lines, text_direction='lr', regions=None)

Given a list of baselines and regions, calculates the correct reading order and applies it to the input.

Parameters:
  • lines (Sequence[Dict]) – List of tuples containing the baseline and its polygonization.

  • regions (Optional[Sequence[shapely.geometry.Polygon]]) – List of region polygons.

  • text_direction (Literal['lr', 'rl']) – Set principal text direction for column ordering. Can be ‘lr’ or ‘rl’

Returns:

The indices of the ordered input.

Return type:

Sequence[int]

kraken.lib.segmentation.vectorize_lines(im, threshold=0.17, min_length=5, text_direction='horizontal')

Vectorizes lines from a binarized array.

Parameters:
  • im (np.ndarray) – Array of shape (3, H, W) with the first dimension being probabilities for (start_separators, end_separators, baseline).

  • threshold (float) – Threshold for baseline blob detection.

  • min_length (int) – Minimal length of output baselines.

  • text_direction (str) – Base orientation of the text line (horizontal or vertical).

Returns:

[[x0, y0, … xn, yn], [xm, ym, …, xk, yk], … ] A list of lists containing the points of all baseline polylines.

kraken.lib.segmentation.calculate_polygonal_environment(im=None, baselines=None, suppl_obj=None, im_feats=None, scale=None, topline=False, raise_on_error=False)

Given a list of baselines and an input image, calculates a polygonal environment around each baseline.

Parameters:
  • im (PIL.Image.Image) – grayscale input image (mode ‘L’)

  • baselines (Sequence[Sequence[Tuple[int, int]]]) – List of lists containing a single baseline per entry.

  • suppl_obj (Sequence[Sequence[Tuple[int, int]]]) – List of lists containing additional polylines that should be considered hard boundaries for polygonizaton purposes. Can be used to prevent polygonization into non-text areas such as illustrations or to compute the polygonization of a subset of the lines in an image.

  • im_feats (numpy.ndarray) – An optional precomputed seamcarve energy map. Overrides data in im. The default map is gaussian_filter(sobel(im), 2).

  • scale (Tuple[int, int]) – A 2-tuple (h, w) containing optional scale factors of the input. Values of 0 are used for aspect-preserving scaling. None skips input scaling.

  • topline (bool) – Switch to change default baseline location for offset calculation purposes. If set to False, baselines are assumed to be on the bottom of the text line and will be offset upwards, if set to True, baselines are on the top and will be offset downwards. If set to None, no offset will be applied.

  • raise_on_error (bool) – Raises error instead of logging them when they are not-blocking

Returns:

List of lists of coordinates. If no polygonization could be compute for a baseline None is returned instead.

kraken.lib.segmentation.scale_polygonal_lines(lines, scale)

Scales baselines/polygon coordinates by a certain factor.

Parameters:
  • lines (Sequence[Tuple[List, List]]) – List of tuples containing the baseline and its polygonization.

  • scale (Union[float, Tuple[float, float]]) – Scaling factor

Return type:

Sequence[Tuple[List, List]]

kraken.lib.segmentation.scale_regions(regions, scale)

Scales baselines/polygon coordinates by a certain factor.

Parameters:
  • lines – List of tuples containing the baseline and its polygonization.

  • scale (Union[float, Tuple[float, float]]) – Scaling factor

  • regions (Sequence[Tuple[List[int], List[int]]])

Return type:

Sequence[Tuple[List, List]]

kraken.lib.segmentation.compute_polygon_section(baseline, boundary, dist1, dist2)

Given a baseline, polygonal boundary, and two points on the baseline return the rectangle formed by the orthogonal cuts on that baseline segment. The resulting polygon is not garantueed to have a non-zero area.

The distance can be larger than the actual length of the baseline if the baseline endpoints are inside the bounding polygon. In that case the baseline will be extrapolated to the polygon edge.

Parameters:
  • baseline (Sequence[Tuple[int, int]]) – A polyline ((x1, y1), …, (xn, yn))

  • boundary (Sequence[Tuple[int, int]]) – A bounding polygon around the baseline (same format as baseline). Last and first point are automatically connected.

  • dist1 (int) – Absolute distance along the baseline of the first point.

  • dist2 (int) – Absolute distance along the baseline of the second point.

Returns:

A sequence of polygon points.

Return type:

Tuple[Tuple[int, int]]

kraken.lib.segmentation.extract_polygons(im, bounds, legacy=False)

Yields the subimages of image im defined in the list of bounding polygons with baselines preserving order.

Parameters:
  • im (PIL.Image.Image) – Input image

  • bounds (kraken.containers.Segmentation) – A Segmentation class containing a bounding box or baseline segmentation.

  • legacy (bool) – Use the old, slow, and deprecated path

Yields:

The extracted subimage, and the corresponding bounding box or baseline

Return type:

Generator[Tuple[PIL.Image.Image, Union[kraken.containers.BBoxLine, kraken.containers.BaselineLine]], None, None]

kraken.lib.vgsl module

class kraken.lib.vgsl.TorchVGSLModel(spec)

Class building a torch module from a VSGL spec.

The initialized class will contain a variable number of layers and a loss function. Inputs and outputs are always 4D tensors in order (batch, channels, height, width) with channels always being the feature dimension.

Importantly this means that a recurrent network will be fed the channel vector at each step along its time axis, i.e. either put the non-time-axis dimension into the channels dimension or use a summarizing RNN squashing the time axis to 1 and putting the output into the channels dimension respectively.

Parameters:

spec (str)

input

Expected input tensor as a 4-tuple.

nn

Stack of layers parsed from the spec.

criterion

Fully parametrized loss function.

user_metadata

dict with user defined metadata. Is flushed into model file during saving/overwritten by loading operations.

one_channel_mode

Field indicating the image type used during training of one-channel images. Is ‘1’ for models trained on binarized images, ‘L’ for grayscale, and None otherwise.

add_codec(codec)

Adds a PytorchCodec to the model.

Parameters:

codec (kraken.lib.codec.PytorchCodec)

Return type:

None

append(idx, spec)

Splits a model at layer idx and append layers spec.

New layers are initialized using the init_weights method.

Parameters:
  • idx (int) – Index of layer to append spec to starting with 1. To select the whole layer stack set idx to None.

  • spec (str) – VGSL spec without input block to append to model.

Return type:

None

property aux_layers
blocks
build_addition(input, blocks, idx, target_output_shape=None)
Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

  • target_output_shape (Optional[Tuple[int, int, int, int]])

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

build_conv(input, blocks, idx, target_output_shape=None)

Builds a 2D convolution layer.

Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

  • target_output_shape (Optional[Tuple[int, int, int, int]])

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

build_dropout(input, blocks, idx, target_output_shape=None)
Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

  • target_output_shape (Optional[Tuple[int, int, int, int]])

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

build_groupnorm(input, blocks, idx, target_output_shape=None)
Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

  • target_output_shape (Optional[Tuple[int, int, int, int]])

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

build_identity(input, blocks, idx, target_output_shape=None)
Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

  • target_output_shape (Optional[Tuple[int, int, int, int]])

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

build_maxpool(input, blocks, idx, target_output_shape=None)

Builds a maxpool layer.

Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

  • target_output_shape (Optional[Tuple[int, int, int, int]])

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

build_output(input, blocks, idx, target_output_shape=None)

Builds an output layer.

Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

  • target_output_shape (Optional[Tuple[int, int, int, int]])

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

build_parallel(input, blocks, idx, target_output_shape=None)

Builds a block of parallel layers.

Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

  • target_output_shape (Optional[Tuple[int, int, int, int]])

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

build_reshape(input, blocks, idx, target_output_shape=None)

Builds a reshape layer

Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

  • target_output_shape (Optional[Tuple[int, int, int, int]])

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

build_rnn(input, blocks, idx, target_output_shape=None)

Builds an LSTM/GRU layer returning number of outputs and layer.

Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

  • target_output_shape (Optional[Tuple[int, int, int, int]])

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

build_ro(input, blocks, idx)

Builds a RO determination layer.

Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

build_series(input, blocks, idx, target_output_shape=None)

Builds a serial block of layers.

Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

  • target_output_shape (Optional[Tuple[int, int, int, int]])

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

build_wav2vec2(input, blocks, idx, target_output_shape=None)

Builds a Wav2Vec2 masking layer.

Parameters:
  • input (Tuple[int, int, int, int])

  • blocks (List[str])

  • idx (int)

  • target_output_shape (Optional[Tuple[int, int, int, int]])

Return type:

Union[Tuple[None, None, None], Tuple[Tuple[int, int, int, int], str, Callable]]

codec: kraken.lib.codec.PytorchCodec | None = None
criterion: Any = None
eval()

Sets the model to evaluation/inference mode, disabling dropout and gradient calculation.

Return type:

None

property hyper_params
idx
init_weights(idx=slice(0, None))

Initializes weights for all or a subset of layers in the graph.

LSTM/GRU layers are orthogonally initialized, convolutional layers uniformly from (-0.1,0.1).

Parameters:

idx (slice) – A slice object representing the indices of layers to initialize.

Return type:

None

input
classmethod load_model(path)

Deserializes a VGSL model from a CoreML file.

Parameters:

path (Union[str, os.PathLike]) – CoreML file

Returns:

A TorchVGSLModel instance.

Raises:
  • KrakenInvalidModelException if the model data is invalid (not a

  • string, protobuf file, or without appropriate metadata).

  • FileNotFoundError if the path doesn't point to a file.

m
property model_type
named_spec: List[str] = []
nn
property one_channel_mode
ops
pattern
resize_output(output_size, del_indices=None)

Resizes an output layer.

Parameters:
  • output_size (int) – New size/output channels of last layer

  • del_indices (list) – list of outputs to delete from layer

Return type:

None

save_model(path)

Serializes the model into path.

Parameters:

path (str) – Target destination

property seg_type
set_num_threads(num)

Sets number of OpenMP threads to use.

Parameters:

num (int)

Return type:

None

spec
to(device)
Parameters:

device (Union[str, torch.device])

Return type:

None

train()

Sets the model to training mode (enables dropout layers and disables softmax on CTC layers).

Return type:

None

property use_legacy_polygons
user_metadata: Dict[str, Any]

kraken.lib.xml module

class kraken.lib.xml.XMLPage(filename, filetype='xml')
Parameters:
  • filename (Union[str, os.PathLike])

  • filetype (Literal['xml', 'alto', 'page'])

Training

kraken.lib.train module

Loss and Evaluation Functions

Trainer

class kraken.lib.train.KrakenTrainer(enable_progress_bar=True, enable_summary=True, min_epochs=5, max_epochs=100, freeze_backbone=-1, pl_logger=None, log_dir=None, *args, **kwargs)
Parameters:
  • enable_progress_bar (bool)

  • enable_summary (bool)

  • min_epochs (int)

  • max_epochs (int)

  • pl_logger (Union[pytorch_lightning.loggers.logger.Logger, str, None])

  • log_dir (Optional[os.PathLike])

automatic_optimization = False
fit(*args, **kwargs)

kraken.lib.dataset module

Recognition datasets

class kraken.lib.dataset.ArrowIPCRecognitionDataset(normalization=None, whitespace_normalization=True, skip_empty_lines=True, reorder=True, im_transforms=transforms.Compose([]), augmentation=False, split_filter=None)

Dataset for training a recognition model from a precompiled dataset in Arrow IPC format.

Parameters:
  • normalization (Optional[str])

  • whitespace_normalization (bool)

  • skip_empty_lines (bool)

  • reorder (Union[bool, Literal['L', 'R']])

  • im_transforms (Callable[[Any], torch.Tensor])

  • augmentation (bool)

  • split_filter (Optional[str])

add(file)

Adds an Arrow IPC file to the dataset.

Parameters:

file (Union[str, os.PathLike]) – Location of the precompiled dataset file.

Return type:

None

alphabet: collections.Counter
arrow_table = None
aug = None
codec = None
encode(codec=None)

Adds a codec to the dataset.

Parameters:

codec (Optional[kraken.lib.codec.PytorchCodec])

Return type:

None

failed_samples
im_mode
legacy_polygons_status = None
no_encode()

Creates an unencoded dataset.

Return type:

None

rebuild_alphabet()

Recomputes the alphabet depending on the given text transformation.

seg_type = None
skip_empty_lines
text_transforms: List[Callable[[str], str]] = []
transforms
class kraken.lib.dataset.BaselineSet(line_width=4, padding=(0, 0, 0, 0), im_transforms=transforms.Compose([]), augmentation=False, valid_baselines=None, merge_baselines=None, valid_regions=None, merge_regions=None)

Dataset for training a baseline/region segmentation model.

Parameters:
  • line_width (int)

  • padding (Tuple[int, int, int, int])

  • im_transforms (Callable[[Any], torch.Tensor])

  • augmentation (bool)

  • valid_baselines (Sequence[str])

  • merge_baselines (Dict[str, Sequence[str]])

  • valid_regions (Sequence[str])

  • merge_regions (Dict[str, Sequence[str]])

add(doc)

Adds a page to the dataset.

Parameters:

doc (kraken.containers.Segmentation) – A Segmentation container class.

aug = None
class_mapping
class_stats
failed_samples
im_mode = '1'
imgs = []
line_width
mbl_dict
mreg_dict
num_classes = 2
pad
seg_type = None
targets = []
transform(image, target)
transforms
valid_baselines
valid_regions
class kraken.lib.dataset.GroundTruthDataset(normalization=None, whitespace_normalization=True, skip_empty_lines=True, reorder=True, im_transforms=transforms.Compose([]), augmentation=False)

Dataset for training a line recognition model.

All data is cached in memory.

Parameters:
  • normalization (Optional[str])

  • whitespace_normalization (bool)

  • skip_empty_lines (bool)

  • reorder (Union[bool, str])

  • im_transforms (Callable[[Any], torch.Tensor])

  • augmentation (bool)

add(line=None, page=None)

Adds an individual line or all lines on a page to the dataset.

Parameters:
add_line(line)

Adds a line to the dataset.

Parameters:

line (kraken.containers.BBoxLine) – BBoxLine container object for a line.

Raises:
  • ValueError if the transcription of the line is empty after

  • transformation or either baseline or bounding polygon are missing.

add_page(page)

Adds all lines on a page to the dataset.

Invalid lines will be skipped and a warning will be printed.

Parameters:

page (kraken.containers.Segmentation) – Segmentation container object for a page.

alphabet: collections.Counter
aug = None
encode(codec=None)

Adds a codec to the dataset and encodes all text lines.

Has to be run before sampling from the dataset.

Parameters:

codec (Optional[kraken.lib.codec.PytorchCodec])

Return type:

None

failed_samples
im_mode = '1'
no_encode()

Creates an unencoded dataset.

Return type:

None

seg_type = 'bbox'
skip_empty_lines
text_transforms: List[Callable[[str], str]] = []
transforms

Segmentation datasets

class kraken.lib.dataset.PolygonGTDataset(normalization=None, whitespace_normalization=True, skip_empty_lines=True, reorder=True, im_transforms=transforms.Compose([]), augmentation=False, legacy_polygons=False)

Dataset for training a line recognition model from polygonal/baseline data.

Parameters:
  • normalization (Optional[str])

  • whitespace_normalization (bool)

  • skip_empty_lines (bool)

  • reorder (Union[bool, Literal['L', 'R']])

  • im_transforms (Callable[[Any], torch.Tensor])

  • augmentation (bool)

  • legacy_polygons (bool)

add(line=None, page=None)

Adds an individual line or all lines on a page to the dataset.

Parameters:
add_line(line)

Adds a line to the dataset.

Parameters:

line (kraken.containers.BaselineLine) – BaselineLine container object for a line.

Raises:
  • ValueError if the transcription of the line is empty after

  • transformation or either baseline or bounding polygon are missing.

add_page(page)

Adds all lines on a page to the dataset.

Invalid lines will be skipped and a warning will be printed.

Parameters:

page (kraken.containers.Segmentation) – Segmentation container object for a page.

alphabet: collections.Counter
aug = None
encode(codec=None)

Adds a codec to the dataset and encodes all text lines.

Has to be run before sampling from the dataset.

Parameters:

codec (Optional[kraken.lib.codec.PytorchCodec])

Return type:

None

failed_samples
im_mode = '1'
legacy_polygons
no_encode()

Creates an unencoded dataset.

Return type:

None

seg_type = 'baselines'
skip_empty_lines
text_transforms: List[Callable[[str], str]] = []
transforms

Reading order datasets

class kraken.lib.dataset.PairWiseROSet(files=None, mode='xml', level='baselines', ro_id=None, class_mapping=None)

Dataset for training a reading order determination model.

Returns random pairs of lines from the same page.

Parameters:
  • files (Sequence[Union[os.PathLike, str]])

  • mode (Optional[Literal['alto', 'page', 'xml']])

  • level (Literal['regions', 'baselines'])

  • ro_id (Optional[str])

  • class_mapping (Optional[Dict[str, int]])

data = []
failed_samples = []
get_feature_dim()
class kraken.lib.dataset.PageWiseROSet(files=None, mode='xml', level='baselines', ro_id=None, class_mapping=None)

Dataset for training a reading order determination model.

Returns all lines from the same page.

Parameters:
  • files (Sequence[Union[os.PathLike, str]])

  • mode (Optional[Literal['alto', 'page', 'xml']])

  • level (Literal['regions', 'baselines'])

  • ro_id (Optional[str])

  • class_mapping (Optional[Dict[str, int]])

data = []
failed_samples = []
get_feature_dim()

Helpers

class kraken.lib.dataset.ImageInputTransforms(batch, height, width, channels, pad, valid_norm=True, force_binarization=False)
Parameters:
  • batch (int)

  • height (int)

  • width (int)

  • channels (int)

  • pad (Union[int, Tuple[int, int], Tuple[int, int, int, int]])

  • valid_norm (bool)

  • force_binarization (bool)

property batch: int

Batch size attribute. Ignored.

Return type:

int

property centerline_norm: bool

Attribute indicating if centerline normalization will be applied to input images.

Return type:

bool

property channels: int

Channels attribute. Can be either 1 (binary/grayscale), 3 (RGB).

Return type:

int

property force_binarization: bool

Switch enabling/disabling forced binarization.

Return type:

bool

property height: int

Desired output image height. If set to 0, image will be rescaled proportionally with width, if 1 and channels is larger than 3 output will be grayscale and of the height set with the channels attribute.

Return type:

int

property mode: str

Imaginary PIL.Image.Image mode of the output tensor. Possible values are RGB, L, and 1.

Return type:

str

property pad: int

Amount of padding around left/right end of image.

Return type:

int

property scale: Tuple[int, int]

Desired output shape (height, width) of the image. If any value is set to 0, image will be rescaled proportionally with height, width, if 1 and channels is larger than 3 output will be grayscale and of the height set with the channels attribute.

Return type:

Tuple[int, int]

property valid_norm: bool

Switch allowing/disallowing centerline normalization. Even if enabled won’t be applied to 3-channel images.

Return type:

bool

property width: int

Desired output image width. If set to 0, image will be rescaled proportionally with height.

Return type:

int

kraken.lib.dataset.collate_sequences(batch)

Sorts and pads sequences.

kraken.lib.dataset.global_align(seq1, seq2)

Computes a global alignment of two strings.

Parameters:
  • seq1 (Sequence[Any])

  • seq2 (Sequence[Any])

Return type:

Tuple[int, List[str], List[str]]

Returns a tuple (distance, list(algn1), list(algn2))

kraken.lib.dataset.compute_confusions(algn1, algn2)

Compute confusion matrices from two globally aligned strings.

Parameters:
  • align1 (Sequence[str]) – sequence 1

  • align2 (Sequence[str]) – sequence 2

  • algn1 (Sequence[str])

  • algn2 (Sequence[str])

Returns:

A tuple (counts, scripts, ins, dels, subs) with counts being per-character confusions, scripts per-script counts, ins a dict with per script insertions, del an integer of the number of deletions, subs per script substitutions.

Legacy modules

These modules are retained for compatibility reasons or highly specialized use cases. In most cases their use is not necessary and they aren’t further developed for interoperability with new functionality, e.g. the transcription and line generation modules do not work with the baseline segmenter.

kraken.binarization module

kraken.binarization.nlbin(im, threshold=0.5, zoom=0.5, escale=1.0, border=0.1, perc=80, range=20, low=5, high=90)

Performs binarization using non-linear processing.

Parameters:
  • im (PIL.Image.Image) – Input image

  • threshold (float)

  • zoom (float) – Zoom for background page estimation

  • escale (float) – Scale for estimating a mask over the text region

  • border (float) – Ignore this much of the border

  • perc (int) – Percentage for filters

  • range (int) – Range for filters

  • low (int) – Percentile for black estimation

  • high (int) – Percentile for white estimation

Returns:

PIL.Image.Image containing the binarized image

Raises:

KrakenInputException – When trying to binarize an empty image.

Return type:

PIL.Image.Image

kraken.transcribe module

class kraken.transcribe.TranscriptionInterface(font=None, font_style=None)
add_page(im, segmentation=None, records=None)

Adds an image to the transcription interface, optionally filling in information from a list of ocr_record objects.

Parameters:
  • im (PIL.Image) – Input image

  • segmentation (dict) – Output of the segment method.

  • records (list) – A list of ocr_record objects.

env
font
line_idx = 1
page_idx = 1
pages: List[Dict[Any, Any]] = []
seg_idx = 1
text_direction = 'horizontal-tb'
tmpl
write(fd)

Writes the HTML file to a file descriptor.

Parameters:

fd (File) – File descriptor (mode=’rb’) to write to.

kraken.linegen module